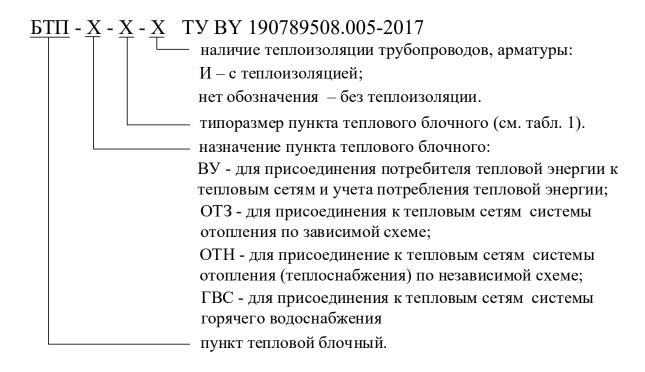
Республика Беларусь, 220013, г. Минск, ул. Кульман, 2, к. 382, т./ф. +375 (17) 370-33-46, моб.+375 (29) 698-55-42 эл. почта: polytron@tut.by, сайт в интернете: www.polytronika.by

ПУНКТЫ ТЕПЛОВЫЕ БЛОЧНЫЕ БТП.

Пункты тепловые блочные БТП (далее – БТП), изготавливаются по техническим условиям ТУ ВҮ 190789508.005-2017.


БТП предназначены для приема, распределения и автоматического учета тепловой энергии, автоматического регулирования параметров теплоносителя (горячей воды) с рабочим давлением до 1,6 МПа и температурой не более 150 °C, в границах от запорной арматуры тепловой сети и хозяйственно-питьевого водопровода на вводе в пункт, до запорной арматуры местных систем отопления, горячего водоснабжения и теплоснабжения установок систем вентиляции и кондиционирования воздуха.

БТП предназначены для непрерывного круглосуточного режима эксплуатации в помещении. Вид климатического исполнения УХЛ 4.2 по ГОСТ 15150.

Электропитание БТП осуществляется от однофазной сети переменного тока напряжением 220 В частотой 50 Гц или от трехфазной сети переменного тока напряжением 380 В частотой 50 Гц.

БТП не предназначены для эксплуатации во взрывоопасных и пожароопасных зонах.

БТП готовы к монтажу по месту использования. БТП относятся к ремонтируемым, восстанавливаемым изделиям.

Типоразмеры и технические характеристики БТП приведены в таблице 1.

Таблица 1

No	Обозначение	Типо-	Расход	Диаметр	Габаритный размер,	Macca,
Π/Π	пункта	размер	теплоносителя,	патрубков.	ДхШхВ, мм	КГ
		пункта	M^3/H	MM	не более	не более
1	БТП-ВУ-1	1	от 0,1 до 6,0	1550	2800x600x1600	100
2	БТП-ВУ-2	2	от 6,0 до 14,0	65	3000x700x1600	110
3	БТП-ВУ-3	3	от 14,0 до 22,0	80	3100x800x1600	120
4	БТП-ВУ-4	4	от 22,0 до 38,0	100	3500x800x1600	160
5	БТП-ВУ-5	5	от 38,0 до 68,0	125	3800x800x1600	210
6	БТП-ВУ-6	6	от 68,0 до 115,0	150	4300x1000x1600	240
7	БТП-ОТЗ-1	1	от 0,1 до 6,0	1550	1150x1100x2000	120
8	БТП-ОТЗ-2	2	от 6,0 до 14,0	65	1200x1100x2000	140
9	БТП-ОТЗ-3	3	от 14,0 до 22,0	80	1200x1200x2000	180
10	БТП-ОТЗ-4	4	от 22,0 до 38,0	100	1300x1200x2000	230
11	БТП-ОТЗ-5	5	от 38,0 до 68,0	125	1400x1300x2000	250
12	БТП-ОТЗ-6	6	от 68,0 до 115,0	150	1500x1400x2000	300
13	БТП-ОТН-1	1	от 0,1 до 6,0	1550	2100x1150x2000	360
14	БТП-ОТН-2	2	от 6,0 до 14,0	65	2400x1200x2000	390
15	БТП-ОТН-3	3	от 14,0 до 22,0	80	2800x1200x2000	460
16	БТП-ОТН-4	4	от 22,0 до 38,0	100	2900x1200x2000	560
17	БТП-ОТН-5	5	от 38,0 до 68,0	125	3300x1200x2100	630
18	БТП-ОТН-6	6	от 68,0 до 115,0	150	3800x1200x2100	750
19	БТП-ГВС-1	1	от 0,1 до 6,0	1550	2100x1200x2000	360
20	БТП-ГВС-2	2	от 6,0 до 14,0	65	2500x1200x2000	410
21	БТП-ГВС-3	3	от 14,0 до 22,0	80	2800x1200x2000	460
22	БТП-ГВС-4	4	от 22,0 до 38,0	100	2900x1200x2000	560
23	БТП-ГВС-5	5	от 38,0 до 68,0	125	3300x1300x2100	670
24	БТП-ГВС-6	6	от 68,0 до 115,0	150	3800x1300x2100	770

Напряжение питающей сети, количество вводов электропитания и потребляемая мощность электрооборудования БТП приведены в таблице 2.

Таблица 2

$N_{\underline{0}}$	Обозначение	Напряжение	Количество	Потребляемая
Π/Π	пункта	питающей сети,	вводов	мощность,
	-	частотой 50 Гц, В	электропитания	кВт, не более
1	БТП-ВУ-1	220	1	0,2
2	БТП-ВУ-2	220	1	0,2
3	БТП-ВУ-3	220	1	0,2
4	БТП-ВУ-4	220	1	0,2
5	БТП-ВУ-5	220	1	0,2
6	БТП-ВУ-6	220	2	0,2
7	БТП-ОТЗ-1	220	2	1,5
8	БТП-ОТЗ-2	220	2	2,0
9	БТП-ОТЗ-3	380	2	3,0
10	БТП-ОТЗ-4	380	2	4,0
11	БТП-ОТЗ-5	380	2	8,0
12	БТП-ОТЗ-6	380	2	12,0
13	БТП-ОТН-1	220	2	3,0
14	БТП-ОТН-2	220	2	4,5
15	БТП-ОТН-3	380	2	6,5
16	БТП-ОТН-4	380	2	8,0
17	БТП-ОТН-5	380	2	12,0
18	БТП-ОТН-6	380	2	14,0
19	БТП-ГВС-1	220	2	0,8
20	БТП-ГВС-2	220	2	1,6
21	БТП-ГВС-3	220	2	2,2
22	БТП-ГВС-4	220	2	3,0
23	БТП-ГВС-5	380	2	4,5
24	БТП-ГВС-6	380	2	6,0

БТП работают в автоматическом режиме.

Реализуется управление следующими контурами:

- 1. Контур отопления (теплоснабжения). В данном контуре осуществляется:
- автоматическое управление регулирующим клапаном для поддержания требуемой температуры теплоносителя, поступающего в систему отопления в зависимости от температуры наружного воздуха по выбранному отопительному графику;
- автоматическое снижение температуры теплоносителя, поступающего в систему отопления по времени, заданному недельной программой;
- автоматическое управление циркуляционными насосами системы отопления.
 - 2. Контур горячего водоснабжения.

В данном контуре осуществляется:

- автоматическое управление регулирующим клапаном для поддержания требуемой температуры горячей воды, поступающей в систему горячего водоснабжения;

- автоматическое снижение температуры горячей воды, поступающей в систему горячего водоснабжения по времени, заданному недельной программой;
- автоматическое управление циркуляционными насосами горячего водоснабжения.
 - 3. Контур подпитки.

В данном контуре осуществляется автоматическое управление электромагнитным или регулирующим клапаном и насосами, установленными на линии подпитки для поддержания заданного давления в независимом контуре системы отопления.

Электропитание БТП предусмотрено от двух взаиморезервирующих вводов, при этом рабочие и резервные электроприемники подключены к разным вводам, а остальные электроприемники (теплосчетчики, регуляторы температуры, схемы управления и сигнализации) получают питание через схему ABP от рабочего или от резервного ввода.

Схемой управления регулирующими клапанами системы отопления и системы горячего водоснабжения предусматривается:

- ручной и автоматический режим управления.
- «тренировка» клапанов системы отопления в межотопительный период для предотвращения их «зарастания».

Схемой управления насосами системы отопления и системы горячего водоснабжения предусматривается:

- ручной и автоматический режим управления;
- контроль давления, создаваемого насосом;
- защита от работы в режиме «сухой ход»;
- световая сигнализация нормального и аварийного режимов работы;
- автоматический пуск и остановка циркуляционного насоса, ГВС по заранее установленной программе;
- произвольный выбор рабочего и резервного насоса;
- автоматический пуск резервного насоса при аварии рабочего;
- автоматическая смена рабочего насоса по установленной программе при отсутствии аварий;

Схемой управления системой подпитки предусматривается:

- ручной и автоматический режим управления насосом подпитки и клапаном подпитки;
- контроль давления, создаваемого насосом подпитки;
- защита насоса подпитки от работы в режиме «сухой ход»;
- световая сигнализация нормального и аварийного режимов работы насоса подпитки и клапана подпитки;
- контроль давления в независимом контуре системы отопления;
- автоматический пуск насоса подпитки и открытие клапана подпитки при снижении давления в независимом контуре системы отопления ниже заданного значения;

- автоматическое отключение насоса подпитки и закрытие клапана подпитки при повышении давления в независимом контуре системы отопления до заданного значения;
- произвольный выбор рабочего и резервного насоса;
- автоматический пуск резервного насоса при аварии рабочего.

Предусмотрена возможность передачи во внешние схемы обобщенного сигнала «АВАРИЯ» об аварии насосного оборудования, падении давления в независимом контуре системы отопления с помощью «сухого контакта», выведенного на клеммник щита автоматики. «Сухой контакт» может быть включен в электрические схемы сигнализации с напряжением 220В, 50Гц с максимальной токовой нагрузкой до 6А. На дисплее контроллера и фасаде щита автоматики предусмотрена расшифровка причин аварии с помощью световой индикации.

Для защиты оборудования Пунктов от превышения давления в системах отопления и ГВС, на подающем трубопроводе независимого контура системы отопления (теплоснабжения) и на трубопроводе горячей воды установлены предохранительные клапаны.

Пункт может быть интегрирован в систему диспетчеризации объекта. Для этого у контроллера в щите автоматики предусмотрены выходы для диспетчеризации: Ethernet (Modbus/TCP) и RS485(Modbus RTU).